
TETRAHEDRAL
TREATS
Have you ever wondered about the

geometry of tetrahedra? It would
seem that there should be some

fascinating results, like those for a
triangle, but you never see any
reference to them. Ross Honsberger
offers an explanation for this lack of
information in his book Mathematical
Gems II [Mathematical Assn of
America, 1976, ISBN 0883853027]:

Computer algebra systems and 3D
construction software make the study
of solid geometry accessible to more
students. A TI-89 graphing calculator
[or Mathematica, which I use in this
article since the visual display of
Mathematica is cleaner than that of the
TI-89] allows quick computations that
would be tedious and time-consuming
if done by hand. This Geometer’s
Corner is about how you can use Cabri
3D, a 3D construction program, and a
computer algebra system such as that
on a TI-89 to study tetrahedra. As I
mentioned earlier it should come as no
surprise that many of the special
properties of triangles have 3D
equivalents. In what follows we will
look for the 3D equivalents of the four
special points that every triangle has.

• A centroid (G): the intersection of the
medians. G is located two thirds of
the way from a vertex to the
midpoint of the opposite side;

• A circumcenter (O): the intersection
of the perpendicular bisectors of the
three sides and the center of the
circumscribed circle;

• An incenter (I): the intersection of
the angle bisectors and the center of
the inscribed circle;

• An orthocenter (H): the intersection
of the altitudes.

In addition O, G, and H all lie on the
Euler line in such a way that GH = 2OG.

FIGURE 1. TRIANGLE ABC WITH

ORTHOCENTER H, CENTROID G, INCENTER

I, CIRCUMCENTER O, AND EULER LINE OH.

Tetrahedra have equivalent centers,
although not every tetrahedron has an
orthocenter. We will use Mathematica
to find each of these special points for
the tetrahedron ABCD with vertices at
A = {2, 4, 0}, B = {6, 8, 0}, C = {8, –2, 0},
and D = {4, 2, 10}. If you are interested
in proofs of the results, you can find
them in the Tetrahedral Geometry
section of my Website,
www.zebragraph.com.

1. Finding the Centroid

A tetrahedron’s median is a segment
connecting a vertex and the centroid of
the opposite face. The image of
tetrahedron ABCD with three of its
four medians in Figure 2 was
constructed using Cabri 3D. The
medians certainly appear to intersect
and in an interesting way.
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“Solid geometry pays as much
attention to the tetrahedron as
plane geometry does to the
triangle. Yet many elementary
properties of the tetrahedron
are not very well known.

Solid geometry is often a more
complicated subject than
plane geometry, for it is
undoubtedly more difficult for
the mind’s eye to establish and
maintain a constant picture of
the relevant positions of
objects in three-dimensional
space. Flat figures are much
easier to think about and to
describe to others. Thus the
pursuit of solid geometry
demands greater motivation.”



FIGURE 2. TETRAHEDRON ABCD WITH

CENTROID G. G1 IS THE CENTROID OF FACE

BDC; G2 IS THE CENTROID OF FACE ACD.

The median AG1 from vertex A to face
BCD can be found by first finding the
centroid G1 of face BCD.

OG1 = 1/3(OB + OC + OD)

Line AG1 has vector equation

(1 – t)OA + tOG1.

The median BG2 from B to face ACD
where 

OG2 =  1/3(OA + OC + OD)

has vector equation

(1 – s)OB + sOG2.

To find the point of intersection you
need to solve the equation

(1 – t)OA + tOG1 = (1 – s)OB + sOG2

for s and t. Here is a solution using
Mathematica. In what follows OP
denotes the vector from the origin O to
point P. This creates a slight problem
later because the circumcenter of a
triangle has traditionally been labeled
O, and so we use the label R for the
center of the circumsphere. (See Table 1.)

That s and t both equal 3/4 shows that
the medians intersect in a special way.
AG = 3/4AG1 and BG = 3/4BG2. Put
another way, the centroid divides each
median in the ratio 1:3. This was first
proved in 1565 by the Italian
mathematician Fredrico Commandino
and appeared as Prop. 17 in his De
Centro Gravitates Solidorum.
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TABLE 1.

Commandino’s Theorem

The four medians of a tetrahedron
concur in a point that divides each of
them in the ratio 1:3, the longer
segment being on the side of the vertex
of the tetrahedron.

A proof of Commandino’s Theorem
can be found at
www.zebragraph.com/3DGems.html

In order to find the circumcenter and
the incenter you need to find the
intersection of three planes. This is
where a computer algebra system
comes in handy. All computer algebra
systems can calculate both the dot

product u • v and the cross product 
u × v of two three-dimensional vectors
u and v. In what follows, we will make
use of the followoing facts.

• If u • v = 0 then u and v are
perpendicular.

• Let u be a vector perpendicular to
plane P. If X = {x, y, z} is any point 
in plane P and A = { xA, yA, zA } is a
particular point in the plane, then 
u • (OX – OA) = 0.

• The plane through points A, B, and
C has equation (AB × AC) • (OX –
OA) = 0.



2. Finding the Circumcenter

To find the circumcenter R you have 
to find the intersection of the
perpendicular bisectors of the six
edges. This intersection can be found
by finding the intersection of three
perpendicular bisecting planes of three
non-planar edges. (Convince yourself
that the intersection of three bisecting
planes of any three edges that form a
face must be a line.) Figure 3a shows
tetrahedron ABCD with the
perpendicular bisecting planes of
edges AB (solid shading), BD (small
holes), and AC (large holes). Figure 3b
shows the circumscribed sphere. 

FIGURE 3A. BISECTING EDGE PLANES

INTERSECTING AT R, THE CIRCUMCENTER.

FIGURE 3B. TETRAHEDRON ABCD WITH

ITS CIRCUMSPHERE.
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TABLE 2.



3. Finding the Incenter

The incenter is located at the
intersection of the six planes that bisect
the six dihedral angles formed by the
faces that share an edge. The task is
easier if you put the equations of the
planes that include a face in normal
form. The equation ax + by + cz + d = 0
is said to be in normal form if a2 + b2 +
c2 = 1. Given two planes P1 with
normal equation a1x + b1y + c1z + d1= 0
and P2 with normal equation a2x + b2y
+ c2z + d2 = 0, the equation of the plane
that bisects the dihedral angle formed
by them is (a1 + a2)x + (b1 + b2)y + (c1 +
c2)z + (d1 + d2) = 0. You actually need to
find the intersection of only three of
these planes, but they must be chosen
so that the edges that determine the
dihedral angles are not co-planar.
Figure 4a shows the intersection I of
the bisecting planes of the dihedral
angles formed by faces ABC and BCD
(large holes), faces ADC and BDC
(small holes), and faces ABC and ABD
(solid shading). Figure 4b shows the
inscribed sphere.

FIGURE 4A. BISECTING PLANES OF

DIHEDRAL ANGLES INTERSECTING AT I,
THE INCENTER.

FIGURE 4B. TETRAHEDRON ABCD WITH

ITS INSPHERE.
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TABLE 3.



4. Finding the Orthocenter

An altitude of a tetrahedron is a line
through a vertex perpendicular to the
opposite face or the plane containing
the opposite face. The orthocenter is
the intersection of the altitudes. As
Figure 5 shows, most tetrahedra don’t
have an orthocenter. 

FIGURE 5. TETRAHEDRON ABCD, WHICH

HAS NO ORTHOCENTER.

The only ones that do are those having
pairs of opposite edges perpendicular.
However, Monge, a French
Mathematician, discovered a point
that is similar to an orthocenter. He
showed that the six planes that pass
through the midpoint of an edge and
are perpendicular to the opposite edge
intersect in a point that is
(appropriately) called the Monge
point, which is shown in Figure 6.

FIGURE 6. TETRAHEDRON ABCD WITH ITS

MONGE POINT.

It turns out that the Monge point has a
neat property that can best be shown
by example. In what follows, we will
see that the plane through the
midpoint of edge AB perpendicular to
edge DC, the plane through the
midpoint of edge BC perpendicular to
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TABLE 4.

edge AD, and the plane through the
midpoint of edge CD perpendicular to
edge AB all meet in a point.

The example in Table 4 suggests that the
centroid is the midpoint of the segment
joining the Monge point and the
circumcenter, as shown in Figure 7. This
turns out to be true in general and is the
three-dimensional equivalent of the Euler
line for triangles in the plane. !

FIGURE 7. TETRAHEDRON ABCD WITH ITS

SPECIAL SEGMENT JOINING THE MONGE

POINT (M) TO THE CIRCUMCENTER (R).


