
Ijust purchased my first
Smartphone and, as a result,
have been fascinated by all
that it can do. I became
interested in the way it

works, and, in the process, I
discovered some very interesting
applications of the geometry
many of us teach.

What particularly interested me was
how cell phones transmit and receive. I
have often wondered about the
antennas like the one in Figure 1 that
have sprouted up all over in the past
ten or so years. I wondered why they
aren’t taller, why there are so many of
them, and why many have the
triangular shape that has become so
common. This column is an attempt to
answer some of those questions. For
those of you interested in how cellular
technology evolved over the years, go
to [3].

A cell phone is actually a miniature
radio that both transmits and receives.
It uses what is known as duplex

technology, which means that you can
talk and listen at the same time. This is
not true for other communication
devices such as walkie-talkies on
which you have to press a button in
order to talk. Cell phones don’t have
much power so they can only transmit
a short distance. This is why there are
so many cellular phone towers. Each
tower defines what is known as a cell,
hence the name, and each cell covers
an area of roughly ten square miles.
There are several different broadcast
systems in use. Each tower has the
ability to broadcast or receive on 832
different frequencies, as does your
phone. In order to avoid interference
problems, no two adjacent cells can use
the same set of frequencies. One
broadcast system assumes that the
region served by a tower is hexagonal
in shape. Ideally the broadcast regions
would form a hexagonal grid like the
one in Figure 2. In order to avoid
interference, the hexagons numbered 1
through 7 must use a separate set of
frequencies.

As shown in Figure 2, each cell has six
neighboring cells, so to avoid
interference there must be seven
distinct sets of frequencies in use. Cells

1 through 7 must use different sets of
frequencies but cell 8 can use the same
set as cell 1, as can cell 9. Since there
are 832 frequencies available for cell
phone use, 42 of which are used for
control purposes, there are 790
frequencies available for users, but
duplex voice channels require two
frequencies each, leaving 395 available
duplex voice channels. This means that
each of the seven cells, six adjacent to
cell 1, can only handle up to 56 users
talking at once [1]. In short, there tend
to be lots of small cells, which means
lots of broadcast towers. Because of the
small size of the cells, the transmission
and receiving devices in a cell phone
don’t require lots of power—they do
not transmit over great distances; this
means the batteries in a phone can be
smaller and will last longer.

As you travel and move from cell to
cell, a lot goes on of which you are
unaware. Without your knowing it,
your phone will change frequencies
from the pair it is using in the cell you
are currently in to the pair it will use in
the cell you are entering. In order to do
this, all the towers in a large area are
connected to what is known as the
Mobile Telecommunications Switching
Office. The MTSC keeps track of each
call being processed, aware of when
there needs to be a frequency change,
or as it is known in the trade, a hand off.
One of the reasons it has taken so long
for cellular technology to become
available is that the hand-off process
requires huge amounts of computing
power that in turn require huge
storage capabilities that only recently
have become available. To make the
system work, the cells have to be
carefully defined and controlled, which
is the subject of the rest of this column.
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FIGURE 1. A TYPICAL CELLULAR

TELEPHONE NETWORK ANTENNA.
FIGURE 2. HEXAGONAL ARRANGEMENT OF

CELLULAR BROADCAST REGIONS.

Last edition’s Geometer’s Corner contained several errors. For
those interested, I have posted a corrected version of “Special
Properties of Conics” on my Website, www.zebragraph.com.



In order to provide uninterrupted
service as you move, your phone is
constantly checking the strength of the
channel provided by the cell you are in
and comparing it to the strength of a
neighboring cell. As soon as the
neighboring signal is stronger, your
phone is automatically switched over
to that channel. This also means that
you have moved to a different cell. In
setting up a cell service it is very
important that companies have an idea
of what the shapes of the cells are,
given cell tower locations. So, this is
the geometric problem: Given a
collection of tower locations, what are
the shapes of the cells or broadcast
regions they define?

If Earth was perfectly flat and there
were no vertical obstructions like
buildings, the answer is easy. The cells
would all be regular hexagons as
shown in Figure 2. Earth is not flat, and
for a variety of reasons the towers
cannot be placed in such a way as to
produce regular hexagonal cells.

One way of answering what the cell
shapes are is to determine, given a set
of tower locations, what are known as
the Voronoi, or nearest neighbor
regions. A nearest neighbor region for
a tower contains all points that are
closest to that tower.

In order to answer the cell-shape
question, let’s start with the simplest
case. Suppose there are only two
towers in the network, say T1 and T2.
The perpendicular bisector of the
segment T1T2 is the set of all points
that are equidistant from T1 and T2, so
all the points on the same side as T1 of
the bisector as T1 are closer to T1, and
those on the other side are closer to T2.

If there are three non-collinear towers
T1, T2 and T3, then, using the same
approach, you need to draw the
perpendicular bisectors of the sides of
triangle T1T2T3. These intersect at the
circumcenter C of the triangle. Figure 3
shows the nearest neighbor regions for
a three-tower set up.

FIGURE 3. NEAREST NEIGHBOR REGIONS

FOR THREE TOWERS.

When there are more than three
towers, the nearest neighbor regions
are much harder to determine. For a
long time there was no known easy-to-
use algorithm for finding Voronoi
Regions. However, in 1986, Steven
Fortune of Bell Labs came up with a
new algorithm that is much faster and
much easier to implement. The
algorithm makes use of the following
geometric definition of a parabola.

Given a line in the plane and a point
not on the line, the set of points that
are equidistant from the point and the
line forms a parabola. The line is called
the directrix and the fixed point is
called the focus.

Suppose the focus has coordinates
(xf , yf ), and the directrix is the
horizontal line y = yd; then the
definition above gives us

Formula 1.

This is the function we will use in
implementing Fortune’s Algorithm
with a geometric construction package
such as the Geometer’s SketchPad. The
construction I will describe is based
on one I found in David Austin’s

American Mathematical Society
Feature Column [2]. This site contains
an applet that will create Voronoi
Regions using the following process.

To implement Fortune’s Algorithm on
a rectangular region and a set of points
such as those in Figure 4, we will need
to generate a set of parabolas which
have different focal points but the
same directrix. Fortune calls the
movable directrix the sweep line. He
noticed that something very interesting
happens when you start with the
sweep line above all the points in a
defined region, and then move it until
it is below the lowest point, keeping it
parallel to the x-axis. Note that any
point above the sweep line defines a
parabola that opens up, and any point
below the sweep line defines one that
opens down. Fortune noticed that the
parabolas that open up intersect in
interesting ways. To be specific:

• If two parabolas intersect in a point,
that point has to be equidistant from
the foci of the two intersecting
parabolas. As the sweep line moves
down, the intersection of the two
parabolas traces out a set of points
that are equidistant from the two
focal points, and thus lay on a
boundary of a two nearestneighbor
regions.

• If three parabolas intersect in a
point, that point has to be
equidistant from the three focal
points and is the intersection of the
boundaries of three regions.

• Finally, and probably most
importantly, Fortune noticed that
the intersections that matter occur
along the lower boundary formed
by the parabolic arcs. He calls this
the beach line.

What follows is how I used the Geometer’s
SketchPad to implement Fortune’s
Algorithm. I also used a drawing
program to add detail to the GSP
sketches. Consider the rectangular region
shown in Figure 4 with five points.
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equidistant from T1 and T2. Fortune
refers to the points where the parabolic
arcs forming the beach line intersected
as break points.

Since P is equidistant from T1 and T2,
the nearest-neighbor boundary line for
T1 and T2 is simply the perpendicular
bisector of T1T2.

Next we will introduce a third
parabola with FOCUS T3 , as shown in
Figure 8. Note that as we move the
sweep line down, the parabolas
change shape, as does the beach line.
Eventually, the sweep line will be
below T3, and the parabola defined by
T3 will open upward. When this
happens, parabola T3 will intersect
parabola T1 in two points, each of
which is equidistant from T1 and T3.
The trace of these points is the
perpendicular bisector of segment
T1T3. As the sweep line moves farther
down, parabola T3 will intersect
parabola T2 in two points that lie on
the perpendicular bisector of T2T3.

As the sweep line moves down and
below T4 , another parabola is formed,
and new breakpoints appear on the
beach line (Figure 9). Tracing these
break points creates more of the
nearest neighbor boundaries.

As the sweep line moves farther down,
parabolas T1, T2, and T3, eventually
meet at a single point. Since the points
T1, T2 and T3 are the vertices of a
triangle, the three perpendicular
bisectors meet at a point, the
circumcenter of the triangle T1T2T3.
Fortune calls this a circle event, and
the point determines a shared vertex
for three nearest neighbor regions.
Figures 10–12 show what happens as
the sweep line is moved down, and
Figure 13 shows the resulting Voronoi
regions.

The preceding represents one way of
determining the regions covered by
each tower. This turns out to provide a
decent approximation; there is a

FIGURE 4. FIVE POSSIBLE TOWER

LOCATIONS.

In terms of the cell phone problem,
think of these points as towers. To get
the nearest neighbor regions for the
five tower locations in Figure 4, do the
following:

Step 1. Construct a movable horizontal
line just below T1. This is the
sweep line.

Step 2. Using Formula 1, construct the
parabola with focus T1 and
directrix the sweep line (Figure 5).

Step 3. Create the parabola with focus
T2 and directrix the sweep line.

This creates a second parabola as
shown in Figure 6.

Notice that if the sweep line lies below
T1 but above T2, you get two parabolas
that open in opposite directions,
though we are only interested in
parabolas that open in the same
direction. If you move the sweep line
below T2 as shown in Figure 7, things
get interesting. Notice that now the
two parabolas intersect at two points
P1 and P2 (P2 is not shown because it is
off the screen). The two parabolas will
always intersect in two points, but
since we are only considering nearest
neighbor regions, we will ignore the
point off the screen as being too far
away. Let F be the foot of the
perpendicular from P1 to the sweep
line. Since PT1 = PF and PT2 = PF, P1 is
equidistant from T1 and T2. In a similar
fashion you can show that P2 is
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FIGURE 6. PARABOLAS T1 AND T2. FIGURE 7. PARABOLAS T1 AND T2
INTERSECTING AT A BREAK POINT P
ALONG THE BEACH LINE.

FIGURE 5. PARABOLA T1 CHANGES SHAPE AS THE SWEEP LINE MOVES DOWN.



method in use that is similar to this
one that uses what are known as
weighted Voronoi Regions. It should also
be noted that the nearest neighbor
regions should use a metric that takes
into account signal strength that is
measured using an inverse square law.
For more on this, go to [4].

My original plan for this column was
to find a map showing where the
towers are in the area where I live and
use that as the source for the diagram
explaining Fortune’s Algorithm.
Unfortunately, this is much easier said
than done. Many towers have multiple
antennas, and it is not easy to
determine which antenna belongs to
which company. Also, any tower less
than 200 feet in height does not have
to be federally registered; so there is no
actual record of what towers and
antennae belong to which company. It
can be done, but it would take a while.
However, once I get an accurate map
of the towers in my area for a given
provider, I will use it as a basis for a
project using Fortune’s Algorithm. !
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FIGURE 9. THE SWEEP LINE HAS MOVED

BELOW T4. THE BEACH LINE NOW CONSISTS

OF FOUR PARABOLIC ARCS, AND THE

BOUNDARY BETWEEN T2 AND T4 HAS

APPEARED.

FIGURE 8. THE SWEEP LINE HAS MOVED

BELOW T3, AND PARABOLA T3 HAS BEEN

CREATED. THE BEACH LINE CONSISTS OF

THREE PARABOLIC ARCS, AND THE

BOUNDARY BETWEEN T1 AND T3 HAS

APPEARED.

FIGURE 13. THE FINAL DIAGRAM WITH ALL

THE PARABOLAS REMOVED.
FIGURE 12. THE SWEEP LINE HAS MOVED

EVEN FARTHER OUT OF THE FRAME. THE

BEACH LINE CONSISTS OF TWO PARABOLIC

ARCS, AND THE BOUNDARY BETWEEN T4
AND T5 HAS APPEARED.

FIGURE 11. THE SWEEP LINE HAS MOVED

FARTHER DOWN AND IS NOW OUT OF THE

FRAME. THE BEACH LINE CONSISTS OF

THREE PARABOLIC ARCS, AND THE

BOUNDARY BETWEEN T3 AND T4 HAS

APPEARED.

FIGURE 10. THE SWEEP LINE IS JUST PAST

T5. THE BEACH LINE CONSISTS OF THREE

PARABOLIC ARCS, AND THE BOUNDARY

BETWEEN T3 AND T5 HAS APPEARED.


