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Modeler’s Corner

REFLECTIONREFLECTION

W
hat follows is a direct result of the work I have been doing over
the past five years on a National Science Foundation project,
grant number ESI9618029.The project, known as CAS-Intensive
Mathematics, was based at Penn State and the University of
Iowa and was headed by Dr. M. Kathleen Heid, and Dr. Rose

Mary Zbiek.The goal of the project was to create materials for the secondary
school curriculum that took full advantage of the latest technologies.We ended up
making extensive use of Geometer’s Sketchpad and the computer algebra system
found on the TI-92 and more recently on the TI-89.We found that given these
technologies we could have students work with geometric transformations in new
and exciting ways. Because of this I found myself becoming more and more
interested in computer graphics and their underlying mathematics.The study of
transformations is greatly enhanced by the use of geometric construction packages
such as Cabri and Geometer’s Sketchpad, but there has been a lot written about
that. So, this issue’s column will focus on how you can use a computer algebra
system, Mathematica, to study a particular geometric transformation, or reflection, in
new and rewarding ways.Almost all that follows can be done using the computer
algebra systems now available on handheld calculators such as the TI-89 and is in no
way dependent on using Mathematica.

JON CHOATE
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A word about design software

Macromedia’s Freehand is typical of
the type of software graphic designers
are currently using. It offers the artist a
variety of tools for creating and
transforming designs including those
that will translate, rotate, reflect, scale
and shear (or skew) an image. Figure 1
shows the Freehand 10 toolbar that
contains its transformation tools. In
what follows we will look at how this
tool works and the underlying
mathematics.

FIGURE 1. THE REFLECTION TOOL

To use the reflection tool in Freehand,
you first select it, which changes the
cursor to a circular shape. You then
move the cursor so that it lies on a
point on the reflection line and click
the mouse. At this point a line appears.
You now move the cursor until you get
the line oriented the way you want it
and then you release the mouse, at
which point the reflected image
appears and the reflection line
disappears. Underlying this tool is a
set of routines that take as input two
points on the reflection line and which
then create the appropriate
transformation. As you know the
transformations that are used to rotate,
reflect, scale and shear (or skew) an
image are all linear affine
transformations and can be expressed
in matrix form as 

+ .

Actually, when matrices are used in
computer graphics to transform planar
figures, the computations are done
using 3 x 3 matrices. With this in mind
note that the general affine
transformation shown above can be 
re-expressed as

where the point (x, y) is represented as
(x, y, 1). There are many advantages to
using this representation. First, it
allows you to perform translations
using matrix multiplication. For
example, to translate a point P (x, y) 4
units in the x-direction and 10 units in
the y-direction you could represent P
by the column vector 

and multiply by a 3 x 3 as shown below

=

The technical name for this new
coordinate system is homogeneous
coordinates. They are used extensively
in computer graphics for a variety of
reasons and will be the subject of a
future Modeler’s Corner column.

The mathematics of reflection

In order to derive these formulas, one
must first figure out how to reflect
about any line through the origin. Note
that the way this tool works, the
computer is probably keeping track of
two points: The first is the location of
the cursor, call this P1, where the
mouse button is depressed, and the
second, P2, the location of the cursor
when the mouse button is released.
Knowing this, it is easy to calculate the
Cartesian equation of the line or the
vector equation of the line and a unit
vector parallel to P1P2. Assume for the
sake of argument that the line has

equation y = mx + b. To perform this
reflection it is helpful to first derive the
equations for reflecting a point about
the line y = mx. To do this, assume that
tan–1(m) = !, and that the point you
wish to reflect has polar coordinates
P[r; "] and Cartesian coordinates (x, y)
(see Figure 2 below).

FIGURE 2. 
REFLECTING AROUND THE LINE y = mx

Since the angle between OP and the
line y = mx is ! – ", the angle between
OP’, where P’ is the image of P, is 
also ! – " so the reflected point OP’ 
has polar coordinates P’[r, ! – " + 
! – " + "] = P’[r, 2 ! – "]. Converting 
to Cartesian coordinates, you get 
P’ = (x’, y’) = (r cos(2! – "), 
r sin(2! – ")). Applying the double
angle formulas to the preceding yields 

x’ = r cos(2! – ")
= r(cos(2!) cos(") + sin(2!) sin("))
= r cos(2!) cos(") + r sin(2!) sin(")
= cos(2!)( r cos(")) + sin(2)(r sin("))
= cos(2!) x + sin(2!)y.

Using an analogous argument you can
show that

y’ = sin(2!)x – cos(2!)y

Expressing this in matrix form,

=

To reflect around y = mx + b, all you
need to do is first shift the origin to 
(0, –b), reflect around y = mx, and then
translate back. Expressing this in
matrix form and calculating using
Mathematica gives you Figure 3.
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Another way to develop these
equations is through the use of some 
of the properties of reflection. In this
case we will reflect around any line 
y = mx + b. In figure 1, P’(x’, y’) is the
reflected image of P(x, y). The following
facts about reflections will be useful in
what follows and are easy to prove.

a) The midpoint M of PP’ must lie on
the reflection line, so

= m + b

b) The segment PP’ must be
perpendicular to the reflection line,
so

= 

This gives you two equations in two
unknowns, which could be solved by
hand but can easily be done using a
CAS as we have done using
Mathematica in Figure 4.

Cleaning the preceding up a bit, letting
xx = x’ and yy = y’ and expressing it in
matrix notation gives

= 

A third way to drive the reflection
formulas is to make use of the
formulas for reflecting around the 
x-axis. The image of the point (x, y)
when reflected about the x-axis is 
(x, –y). Expressed in matrix form this
becomes

=

To reflect a point about the line 
y = mx + b do the following

1. Translate the origin to (0 , –b)

2. Rotate the plane about the origin
through an angle of !, where 
! = tan–1(m).

3. Reflect the rotated point about the 
x-axis.
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4. Rotate the plane about the origin
through an angle of !.

5. Translate by (0, b). 

Expressing this in matrix form and
using Mathematica yields Figure 5.

Apply the double angle formulas to
the output and you get the same result
we got earlier. 

I suspect that the Reflection Tool in
Freehand does not use the y = mx + b
form because it can’t be used to reflect
about vertical lines. Going back to how
the tool actually works, we need to
come up with formulas that take as
input the coordinates of the two points
P1(x1, y1) where the mouse is held
down and the point P2(x2, y2) where
the mouse is released. Here is what I
think happens after P2 is defined.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.
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1. The angle ! = tan–1 is
calculated.

2. The origin is shifted to P1(x1, y1).

3. The point is reflected using the matrix
we developed for reflecting around the
line y = tan(!)x (or if 
! = "/2 the line x = 0).

4. The origin is shifted back.

To do this it is really helpful to be able to
define matrix functions with parameters.
Figure 6 shows you can use Mathematica
to enter the reflection matrix we just
defined and give it the name reflect as
well as a translation matrix.

So this gives you another way to reflect
points: Find two points on the reflection
line P1 and P2 and use the formulas

x’ = cos(2t)(x – x1) + sin(2t))(y – y1) + x1

y’ = sin(2t)(x – x1) – cos(2t))(y – y1) + y1

One final thought about reflections for
those of you who use vectors. There is a
very nice way to derive the reflection
formulas using vectors and the projection
of one vector on another. Here is a brief
outline. In Figure 7 below, O is the origin,
Q is some point on the line y = mx, P is
the point you want to reflect, and P’ is the
image of P. 

FIGURE 7. VECTOR OP’ IS THE REFLECTION OF

OP ABOUT THE VECTOR OQ

Let OM be the projection of OP on OQ
which means that OM = kOQ, where 
k = (OP•OQ/OQ•OQ), (• stands for the
dot product). The vector MP = 
OP – OM. Since P’ is the reflection of P,
MP’ = –MP. Therefore,

OP’ = OM + MP’ 

= OM – MP

= OM – (OP – OM)

= 2 OM – OP. 

This method is neat and shows the real
power of using vectors. To see this
assume that OQ = (2, 1) and OP’ = 
(x, y) then 

OM = ((2,1)•(x, y)/(2, 1)•(2, 1))(2, 1) 

= ((2x + y)/5)(2, 1) 

= ((4x + 2y)/5, (2x+ y)/5)

and 

OP’ = 2 OM – OP

= 2((4x + 2y)/5, (2x + y)/5) – (x, y)

= ((8x + 4y)/5, (4x + 2y)/5) – (x, y)

= ((3x + 4y)/5, (4x – 3y)/5)

Expressed in matrix form this becomes

=

Equating all the preceding expressions for
reflecting about a given line is the source
of some nice trig exercises that I
encourage you all to try. Also, armed with
the rotation formulas, you can begin to
analyze algebraically how reflections
combine. For example, you can show that

a) reflection in two parallel lines is a
translation, and the order in which you
reflect about the lines makes a
difference.

b) reflection in two intersecting lines is a
rotation, and the order in which you
reflect about the lines makes a
difference. In order to find the center of
rotation C note that C must be a fixed
point for the transformation

I hope the preceding will encourage some
of you to play more with transformations,
and to start using computer algebra
systems if you haven’t already done so. !
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