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Geometer’s Corner

T
his column focuses

on iterating linear

functions of both

a real and a

complex variable

and shows that there is some

interesting geometry underlying

the process. Here is a quick

overview of how to iterate a

linear function. (If you are

unfamiliar with the process, [1]

has a good introduction to

iteration.) Start with a linear

function in the form f(x) = ax + b

and a value x0 and then calculate

the sequence x0, x1 = f(x0),

x2 = f(x1) = f(f(x0)), x3 = f(x2) =

f(f(f(x0))), . . .

The sequence {xi} is called the orbit of
x0. For example let f(x) = 0.5x + 4 and
x0 = 10, then the orbit of 10 is {10, 9, 8.5,
8.25, . . . }. The first three are calculated:

x1 = f(10) = 0.5(10) + 4 = 9

x2 = f(f(10)) = 0.5(9) + 4 = 8.5

x3 = f(f(f(10))) = 0.5(8.5) + 4 = 8.25

When iterating a function, we are
interested in what happens to the orbit
in the long run. In this example as n
gets larger and larger xn approaches 8.
For this reason, 8 is called an attracting
fixed point. Note that in this case
f(8) = 8, which suggests that we could
find the fixed point by solving the
equation f(x) = x or x = 0.5x + 4.

Here is another example. Let f(x) = 2x + 1.
The orbit of 1 is {1, 3, 7, 15, 31, . . . }.

In this case, the orbit of 1 gets larger
and larger and approaches infinity.
Starting with a seed of –2, you get an
orbit of {–2, –3, –5, –9 , –17, . . . }, which
takes off towards negative infinity.
There is a fixed point in this case.
Solving x = 2x + 1 you learn that x = –1.
This is an example of a repelling fixed
point since the orbits of seeds greater
than –1 go off to infinity and those less
than –1 go off to negative infinity.

In general if you iterate, f(x) = ax + b
there will be a fixed point at F = .

• F is attracting if < 1;

• F is repelling if > 1.

Any linear function with a fixed point can
F be re-expressed as f(x) = a(x – F) + F.
This is called fixed point form. Note that

f(f(x)) = a(f(x) – F) + F

= a[(a(x – F) + F) – F] + F

= a2(x – F) + F
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How about f(f(f(x)))?

f(f(f(x))) = a({a2(x – F) + F} – F) + F

= a{a2(x – F) + F} – aF + F

= a3(x – F) + aF – aF + F

= a3(x – F) + F

This suggests that if you iterated f(x) n
times you would get

f [n](x) = an(x – F) + F (1),

a result that has a nice induction proof.

Equation (1) has an interesting
geometric interpretation when you
think of it in terms of vectors on a
number line. In Figure 1, X, the seed,
is where you start and F is the fixed
point. The vector X – F represents how
far you are from the fixed point F.
Clearly, X – F + F = X. Since a(X – F) is
a multiple of the vector (X – F), a(X – F)
will either be longer or shorter than
(X – F) depending on the value of . If

>1 then a(X – F) is longer than
(X – F) and X1 = a(X – F) + F is farther
from the fixed point than X.

FIGURE 1. A VECTOR INTERPRETATION OF

ITERATING f(x) = ax + b.

If < 1 then a(X – F) is shorter than
(X – F) and X1 = a(X – F) + F is closer
to the fixed point.
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Using a similar argument, X2 = f [2](X)
is closer to the fixed point F than X1 if

< 1 and farther away if > 1.

Another approach is to look at the
sequence .
This is an increasing geometric
sequence if > 1 or a decreasing one
if < 1. With the preceding approach
in mind, let’s see how this applies to
the world of finance.

Mortgages and Iterating
Real Valued Linear Functions

Consider how a loan or mortgage
works. The bank lends you an initial
amount M. After one month, the bank
calculates the interest, adds it to the
balance and adds whatever payment
P you made. If i is the interest rate per
interest period then your balance after
one month is M + iM + P = (1 + i)M + P.
The bank continues to do this until
your balance is $0. Note that all the
bank is doing to calculate your new
balance is iterating the function
f(x) = (1 + i)x + P. The sequence {f(M),
f(f(M)),...} gives your balance each
month.

Here is an example. You borrow
$10,000 and are charged 0.5 % per
month and make payments of $500 per
month. Your balance at the end of the
first month is

–10000 + (.005)(-10000) + 500 = –9,550.

Notice that you have reduced the
balance by an amount of $450, which
means you also paid the bank $50 in
interest.

Also notice that you could have
rewritten the above as

(1.005)(–10000) + 500,

so all you are really doing is iterating
the function

f(x) = 1.005x + 500.

This has a fixed point –100,000 and it is
repelling. It also has an interesting
interpretation. If you were to borrow
$100,000 at this interest rate and made
payments of $500 per month, all you
would do is pay the interest and your
balance would be –$100,000 forever.
This is the loan from Hell!

To see how long it would take you to
pay off this loan we can use Formula 1.
Substituting 1 + i for a and for F, the
balance B(n) in the nth time period is

B(n) = (1 + i)(1 + i)n –

For this loan, B(0) = –100000, B(n) = 0,
i = 0.005, and P = 500.

0 = 1.005n(–10000 + 100000) – 100000

0 = 1.005n(90000) – 100000

Using logs you get

n = ≈ 21.1247

So it takes a little more than 21 months
to pay off the loan.

Think about the sequence defined by
1.005n(90000). It is a geometric
sequence that measures how far you
are from the fixed point, and it grows
slowly at first.

Does this explain the awful feeling you
get when you start your mortgage
payments and the balance hardly
changes?

The Golden Spiral and Iterating
the Linear Complex Function

f (z ) = az + b

One of the highlights for me in
teaching advanced algebra has always
been teaching complex numbers in
general and De Moivre’s Theorem in
particular, which states that if you
multiply two complex numbers in
polar form, [r1;t1] and [r2;t2], their
product is equal to [r1r2;t1 + t2]. In
short, you multiply the lengths and
add the angles.

Consider now the complex function
f(z) = az + b where z, a, and b are
complex numbers. Expressed in polar
form, a = [r;t]. This means that the
function f(z) rotates the complex
number z through an angle of t,
stretches it by a factor of r and then
slides it b2 units in the horizontal
direction and b1 units in the vertical
direction. Just as in the case of the real
valued linear function, f has a fixed
point Φ. In this case, Φ = and, as
was the case with the real valued linear
function f(x) = ax + b, f(z) can be re-
expressed as f(z) = a(z – Φ) + Φ. Using
the fact that if α and β are complex
numbers then = , you can see

that the sequence , ,

again forms either an
increasing or decreasing sequence
depending on the length of a. Since we
are now dealing in two dimensions,
the sequence zi either spirals in
towards Φ or away from it. For
example, Figure 2 shows a sequence
produced by iterating az + b with > 1.
In both cases the sequence {zi} lies on a
spiral.

FIGURE 2. A VECTOR INTERPRETATION OF

ITERATING f(x) = ax + b.

Let’s put the preceding exmple to use.
It is commonly thought that the spiral
curve you find when you slice a
seashell like the Chambered Nautilus
in half is the same as the spiral known
as the Golden Spiral shown in Figure 3.
This spiral is formed by creating a
series of nested Golden Rectangles and
then creating a series of arcs inscribed
in the squares. They look like they
form a spiral: actually, they don’t [2]. In
what follows we will see why.
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FIGURE 3.

Here’s how to construct the Golden
Spiral in Figure 3a using a geometric
construction program.

1. Construct a Golden Rectangle. There
are lots of ways to do this but here is
a relatively easy one. Construct a
segment AB of any length. Use the
calculator to calculate the Golden
Ratio, which we denote by φ and
equals . Then use the dilate
tool with a dilation factor equal to φ
to create a point C on AB such that
AC has length equal to that of AB
times φ. Construct a rectangle with
length equal to that of AC and width
equal to that of AB.

2. Label the rectangle WXYZ as shown
in Figure 4.

3. With W as center rotate rectangle
WXYZ through –90° creating
rectangle WX'Y'Z'.

4. With W as center dilate rectangle
WX'Y'Z' by a scale factor of
creating rectangle WX''Y''Z'' as
shown in Figure 4.

5. Create a translation equal to vector
X''Y and translate rectangle
WX''Y''Z''. The result W'YZX' shown
in Figure 4.

6. Repeat steps 3–6 on rectangle
W'YZX' and on all resulting images.

FIGURE 4. FIRST STEP IN CONSTRUCTING

THE GOLDEN SPIRAL.

Continue this process as long as you
can, construct the appropriate circular
arcs in each square and you will create
the spiral shown in Figure 3a.

This certainly looks like a spiral but it
is a fraud since it is composed of
circular arcs. Spirals come in two
varieties: Archimedean and
Logarithmic. The difference between
the two types is that if you draw a ray
from the center O of the spiral and
mark the successive points Pi, where a
ray from the center of the spiral
intersects the spiral, then the spiral is:

• Archimedean if OPi+1 – OPi =
a constant

• Logarithmic if = a constant.

Looking carefully at the Golden Spiral
and the spiral in the Nautilus Papilius,
you can see that both spirals are
Logarithmic and not Archimedean.

For the spiral to be a Golden Spiral, the
ratio has to equal φ. Here is how to use
iteration of a linear complex function
to create a Golden Spiral with the same
method used to produce the sequence
of Golden Rectangles in Figure 4.

Assume that rectangle WXYZ is
centered at the origin W and that point
X has complex coordinates 1. The
complex linear function

f(z) = z + 1 + i

rotates z by –90°, shrinks it by a factor
of and slides the result 1 unit to the
right and up 1. By creating the orbit of
0 we can create a set of points that lie
on the Golden Spiral. Again using the
work we did earlier, we can re-express
f(z) in the form f(z) = an(z – Φ) + Φ as
follows:

f [n](z) = (z – F) + F,

where F =

Since we know that 0 is on the spiral,
we can let z = 0 and plot the first 10
points in the orbit of 0 by calculating
and then plotting the complex
sequence

{0, f [1](0), f [2](0),..., f [9](0)}.

Figure 5 shows a plot of the first 10
points in the orbit of 0 joined by line
segments.

This gives only 10 points on the spiral
so there is more work to do. We can
use DeMoivre’s Theorem again. The
function f(x) = is defined for all

real x. If we express a = in polar form
as

a = ,

then ax = .
1
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Using Mathematica we can get the
plot of f(z) for 0 < x < 20 in steps of
0.005 shown in Figure 6a [4]. There is
a problem if we were to overlay this
graph on the Golden Rectangle shown
in Figure 3a. If we blow up the graph
around the point (1, 1) as shown in
Figure 6b, we see that the spiral
actually goes outside the Golden
Rectangle.

This means that the Golden Spiral
doesn’t fit inside the Rectangle and
shows that one cannot fit an
Archimedean spiral inside the Golden
Rectangle.

There is a second reason the Golden
Spiral doesn’t fit spirals on shells like
the Chambered Nautilus. Since this is

an Archimedean Spiral, the radius
increases at a constant rate per
revolution, which in the case if the
Golden Spiral equals φ4 ≈ 6.85. This
means that the radius of the spiral
increases by a factor of more than 6
per revolution.

If you were to measure how the spiral
on a Chambered Nautilus expands like
the one shown in Figure 3, you would
find that it expands at a rate closer to
1.3 per revolution [2]. This means that
the Golden Spiral fails on two counts
to be a good match for the spiral found
in a Chambered Nautilus.

It is interesting that the method we
used to calculate the size of an
affordable 30-year mortgage is very

similar to the method we used to study
the curve thought by many to best fit
the spiral found in many sea shells.
Such is the beauty of mathematics. !
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FIGURE 5. THE FIRST 10 POINTS IN THE ORBIT OF 0 JOINED BY LINE SEGMENTS.
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Send solutions to old problems and any new
ideas to the Geometer’s Corner editor:

Jonathan Choate, Groton School,
Box 991, Groton, MA 01450.

jchoate@groton.org

FIGURE 6. A) A GOLDEN SPIRAL FIGURE 6. B) AN ENLARGEMENT OF
6A NEAR (1, 1).


