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Introduction by: Jon Choate

This article was produced as an
assignment for a computer graphics
course that I am currently teaching to
high school seniors. The assignment
was to produce an image of a cube in
perspective with hidden lines
removed. The article describes the
mathematics the students used to
produce the image. They produced the
actual image using Microsoft Excel. If
any of you would like a copy of the
spreadsheet, send your email address
to me at jchoate@groton.org and I will
email it to you. We are also in the
process of putting up a website
dedicated to applications of secondary
mathematics in computer graphics. If
you have any material you would like
to contribute to this site, please contact
me and I would be glad to add it to the
site if it is suitable. There will be more
about the site in the next edition of
Consortium. !

In the world of computer graphics, 
the essential goal is to portray a 
three-dimensional world on a 
two-dimensional surface. The task
presented to programmers is to
accomplish this goal in the most
efficient way possible. As a class, we
tackled this problem in the context of a
cube. In order to portray the cube on a
two-dimensional computer screen, we
set up a projection scheme that maps
three-dimensional points onto a single

plane while retaining perspective.
Essentially, we needed a point to serve
as an “eye,” and a plane onto which all
points will be mapped. In our case, we
assigned the xy plane to be our
projection plane and the point 
(xeye, yeye, zeye) to be our eye. 

To properly project our cube, we first
needed to find the projected image of
each of the vertices. To find these
projected vertices, we connected each
preimage point to the eye. The
intersection of that line and the xy
plane was the projected point. We let
(xpoint, ypoint, zpoint) be a point in three-
dimensional space on the opposite side
of the xy plane as the eye (xeye, yeye,
zeye) as seen in Figure 1, and we
derived the formulas for its projection
as follows. 

The parametric equation of the line
between the eye and our point is 
(x, y, z) = (1 – t) * (xeye, yeye, zeye) + 
(t) * (xpoint, ypoint, zpoint). Our projected
point was on this line; specifically, it
existed where z = 0. To solve for t when
z = 0, we solved the separate z
equation, z = (1 – t) * zeye + (t) * (zpoint).
After some algebra, this left us with the
equation t = (–zeye)/(zpoint – zeye). Once
we calculated t, we inserted that value
back into our original equation and
found the equation for the x and y
coordinates of the projected image. The
equations we found were x = (1 – t) *
xeye + t * xpoint and y = (1 – t) * yeye + t *
ypoint. To simplify our calculations we
placed our eye on the z-axis so that 
xeye = yeye = 0, and our final equations
for the projected points were 
x = (–zeye)/(zpoint – zeye) * xpoint and 
y = (–zeye)/(zpoint – zeye) * ypoint. We
used these equations to calculate the
projected image for a vertex of our
cube, and we repeated this for each of
the subsequent vertices. We plotted
these points on a graph, and connected

the respective vertices to create a wire-
frame image of the cube. 

However, a wire-frame is often not the
way in which a programmer wishes to
display a three-dimensional object.
When looking at a solid cube we see
full faces, not a wire-frame, and it is
possible to see a maximum of three
faces as the others are hidden behind
the visible faces. To account for this in
our projection, we needed to find a
method for identifying hidden faces.
The only faces of an object that we can
see are those that are tilted towards our
eye. In other words, a face is visible
only if the vector perpendicular to the
face (the normal vector) forms an angle
less than 90 degrees with a vector from
a point on the face to the eye. For
example, in Figure 2, the vector from
the eye to the face BFGC forms an
angle greater than 90 degrees with the
normal to this face, so this face is not
visible. Conversely, the vector from the
eye to the face AEHD has an angle of
less than 90 degrees with the normal to
this face, so this face is visible. The dot
product serves as a convenient test to
see if the angle between our two
vectors is greater or less than 90
degrees. If the dot product of these two
vectors is positive, the angle is less
than 90 degrees and the face is visible.
Conversely, if the dot product is
negative or zero then the face is
hidden. 

To calculate the normal vector, we took
the cross product of two edges of each
face (Edge 1 x Edge 2 = Normal). In
order to ensure that the normal vector
was directed away from the center of
the cube, we made use of the right
hand rule.

Using the normal vector of each face,
we took the dot product of the normal
vector and the vector from a point on
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that face to the eye. Using our dot
product test, we determined if the
face was visible. All visible faces
were plotted and filled in, while the
faces with non-positive dot
products were not displayed. We
were thus able to create an image of
the cube that is both accurate in
terms of perspective and realistic in
its display of solid faces.

Having created our projection
scheme, we wanted, finally, to
develop a test that showed that it
maintained perspective. The test
that we created is as follows: we
imagined that we placed parallel
lines within our three-dimensional
space and then found their
projected images using our scheme.
The projection of two parallel lines
onto a two-dimensional viewing
plane using our projection scheme
should result in the convergence of
the lines at a vanishing point. We
used our viewing plane, which
consisted of the plane z = 0 (the 
xy-plane) and points of the form 
(x, y, 0). Two lines are parallel if
they have the same directional
vectors. Therefore, the set of lines,
(x, y, z) = (x1, y1, z1) + r(a, b, c) are
parallel regardless of x1, y1, and z1 if
a, b, and c are constant. Thus the
projection of the point (x, y, z) as 
r goes to infinity should be the
same no matter what initial point
(x1, y1, z1) is chosen. To demonstrate
that the projections are independent
of (x1, y1, z1) as r goes to infinity
and thus show that all parallel lines
go to the same vanishing point, we
first considered x’ and y’, which we
assumed to be the x and y
projections of a point along the line
(x, y, z) = (x1, y1, z1) + r(a, b, c) for
any r. 

x’ = 

y’ = 

Here, we created two vector form
equations based on the projection
scheme detailed above that we
derived from the point form
equations: 
(x’, y’) = (t * x1, t * y1), with 

t = .

We then took the limit as r goes to
infinity as a way to find the
projection of the vanishing point.

The constant –zeye in the
denominator and the constants 
x1, y1, and z1 of each equation all
become negligible as r approaches
infinity. The equation for the
projected vanishing point of any
line (x, y, z) = (x1, y1, z1) + r(a, b, c) 
is thus: 

(x, y) = .

We therefore found, according to
the equation above, that only the
direction of the vector (a, b, c) and
the initial placement of the eye zeye
affect the location of the vanishing
point. Thus, two lines of the form 
(x, y, z) = (x1, y1, z1) + r(a, b, c) have
the same vanishing point so long as
a, b, and c are the same for both
lines. In Figure 3, we show how
parallel lines, such as DH and CG,
have a common vanishing point in
our projection scheme as
perspective demands. Thus, our
test of our projection scheme was
successful. !
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FIGURE 2.

FIGURE 3.

Send solutions to old problems and any new
ideas to the Modeler’s Corner editor:

Jonathan Choate, Groton School,
Box 991, Groton, MA 01450.
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