
A
lthough the role

of solid geometry

in the secondary

mathematics

curriculum is

sometimes minimal, many

contemporary geometry books still

include material on pyramids, prisms,

and anti-prisms. Only occasionally is

some mention made of the five

Platonic Solids, which is unfortunate

because they are the source of

some elegant mathematics.This

edition’s Geometer’s Corner will

focus on polyhedra and how they

can be studied making use of both

elementary algebra and a new easy

to use computer-aided design tool

called “SketchUp.”

Polyhedra are three-dimensional
objects that consist of vertices, edges,
and faces. A polyhedron is said to be
regular if all the faces are identical
regular polygons and the same number
of faces meets at each vertex. In what
follows, we will also assume that all
the polyhedra we study are convex
and topologically equivalent to a
sphere.  There are only five possible
regular polyhedra since the only
possible configurations at each vertex
are three, four, or five equilateral
triangles; three squares; or three
pentagons. The five possibilities are
shown in Figure 1. Beneath each
polyhedron is what is known as a net.
Nets can be cut out, folded, and taped
together to form polyhedra. 

In order to figure out how many
vertices, edges, and faces each Platonic
Solid has, most textbooks rely on the
building of a model using cardboard
polygons or commercial manipulatives
such as Polydrons, Jovos, Geofix, or
Zometools. Here is another way of
doing this, and it involves some
algebra and two very useful theorems,
one due to Descartes and the other 
to Euler.

A polyhedron is made up of edges,
vertices, and faces. For example a cube
has eight vertices, twelve edges, and
six faces. If a polyhedron has V
vertices, E edges, and F faces, Euler
showed in 1752 that there is an elegant
relationship between V, E, and F. He
proved Euler’s Theorem.
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FIGURE 1. THE FIVE PLATONIC SOLIDS. 1
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Euler’s Theorem: In any polyhedron with
V vertices, E edges, and F faces, 

V – E + F = 2. (Eq. 1)

At the same time, Euler published
another interesting result about angles
in a polyhedron. (Descartes actually
discovered it in 1620 but never
published it.) The takeout angle (TOA)
of a vertex is found by summing the
angles of the polygons that meet at the
vertex and subtracting that amount
from 360 degrees. This is also what 
you get if you were to unfold the
polyhedron and lay the vertex flat. 
The takeout angle is the resulting gap.
Descartes showed that if you sum all
the takeout angles for all the vertices 
in a polyhedron you will always get
720 degrees. 

Descartes’ Theorem: The total takeout of
any polyhedron is 720 degrees.

Here are some other useful
relationships that hold for any
polyhedron. Take any polyhedron, go
to each vertex and count the edges that
meet at that vertex. Sum them all, and
you always get twice the number of
edges since each edge is double
counted because each edge joins two
vertices. The degree of a vertex is the
number of edges that meet at that
vertex. If you sum the degrees of all the
vertices you always get twice the
number of edges. In the case of a
regular polyhedron that has V vertices
and n edges meeting at each vertex

nV = 2E. (Eq. 2)

Now go to each face and calculate how
many edges bound that face. Sum
what you got for all of the faces, and
you always get twice the number of
edges since each edge is double
counted because each edge belongs to
two faces. In the case of a regular
polyhedron that has F vertices and p
edges bounding each face

pF = 2E. (Eq. 3)

We now have three equations that can
be used to derive more information
about the Platonic Solids. For example,
consider the Platonic Solid that has five
equilateral triangles meeting at each
vertex. In this case, n = 5 and p = 3. The
takeout angle for this solid is 360 – 5 *
60 = 60. The total takeout is equal to
60V so you have 60V = 720. Solve this
for V, and you get V = 12.

Using Equation 2 with n = 5, you get 

5V = 2E

5(12) = 2E

So E = 30. 

To find F use Equation 1 with V = 12, 
E = 30 and you can show that F = 20.
This solid is known as the icosahedron
(icosa from the Greek word for 20).2 It
has twelve vertices, thirty edges, and
twenty faces. I leave it to you to show
that for an icosahedron 3F = 2E and
that you will get the same values for V,
E, and F by solving the system of
equations

5V = 2E

3F = 2E

V – E + F = 2.

This set of equations is often referred
to as the defining equations for an
icosahedron.

Table 1 shows some very interesting
relationships. For example:

• The number of vertices in an
octahedron is equal to the number of
faces in a cube, and the number of
vertices in a cube is equal to the
number of faces in an octahedron.
Because of this the cube and the
octahedron are said to be duals of
each other.

• The number of vertices in an
icosahedron is equal to the number
of faces in a dodecahedron, and the
number of vertices in a
dodecahedron is equal to the number
of faces in an icosahedron. The
icosahedron and the dodecahedron
are duals of each other.
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Tetrahedron 3 3 4 6 4 180

Cube 3 4 8 12 6 90

Octahedron 4 3 6 12 8 120

Icosahedron 5 3 12 32 20 60

Dodecahedron 3 5 20 32 12 36

TABLE 1.

Name n p V E F TOA

A.

B.

FIGURE 2. A) OCTAHEDRON AS DUAL OF A

CUBE B) CUBE AS DUAL OF OCTAHEDRON



Now consider duality. To visualize the
dual of a cube do the following: in
your mind visualize a cube and the
centers of all its faces; now imagine
that any two centers that belong to
faces that share an edge are joined by a
line segment. These segments form an
octahedron.

Repeat the above starting with an
octahedron, and you get a cube.

Figures 2A and 2B show this duality.

Repeat the above with a dodecahedron
and you get an icosahedron.

Repeat the above with an icosahedron
and you get a dodecahedron.

One can use a similar method of
algebraic analysis to derive
information about the Archimedian, or
semi-regular, polyhedra.3 These are
polyhedra whose faces consist of two
or more regular polygons arranged in
such a way that each vertex has the
same configuration of faces at each
vertex. For example, consider the
polyhedron whose faces are squares
and equilateral triangles arranged in
such a way that at each vertex there is
a square, a triangle, a second square,
and a second triangle in that order.
Using an algebraic method similar to
the one shown above one can deduce
not only how many vertices, edges,
and faces the polyhedra has, but also
how many squares and triangles there
are altogether. This method requires
four steps.

Step 1. Calculate the takeout angle, and
use it and Descartes’ Theorem 
to calculate how many vertices the
polyhedron has. In this case, the 
takeout angle is equal to 360 – (90 + 
60 + 90 + 60) = 60 degrees. Descartes’
Theorem tells us that 

60V = 720 

and therefore V = 12.

Step 2. In order to find the number of
edges, we can use the equation 4V = 2E

so

4(12) = 2E

E = 24

since the degree of each vertex is 4. 

Step 3. To find F, we can use Euler’s
Theorem V – E + F = 2. In this case,

12 – 24 + F = 2

F = 14.

Step 4. Let S equal the number of
squares and T the number of triangles.
Since each square has 4 edges, the
polyhedron has 4S edges that belong 
to the squares. Similarly, there are 3T

edges that belong to the triangles.
Adding these we get 4S + 3T, which
must equal twice the number of edges
because each edge belongs to both 
a square and a triangle. Therefore, 
we have

4S + 3T = 2E = 48.

Since we already know that there are
14 faces we also have 

S  + T = 14.

Solving this system of equations below
gives us S = 6 and T = 8.

4S + 3T = 48

S + T = 14.

Another way of doing this uses ratios.
It can be shown that the ratio of the
total number of triangular edges to the
total number of square edges, 3T:4S,

should equal the ratio of the number of
triangles to the number of squares at
each vertex, 1:1. This gives us 3T:4S =
1:1 or 3T = 4S. This combined with 
S + F = 14 gives us another set of 
two equations. 

For good reasons this polyhedron is
called a cuboctahedron. To see why
this name makes sense note that the
number of triangular faces is equal to
8, which is the number of vertices in a
cube and the number of faces in an
octahedron, and that the number of
square faces is equal to 6, which is the
number of faces in a cube and the
number of vertices in an octahedron.
Notice the duality here. The
cubeoctahedron is directly related to
the cube and its dual the octahedron.

Here is how to build a cuboctahedron.
Start with a solid cube and mark the
midpoint of each edge and then join
any two midpoints that belong to the
same face (see Figure 3A).

Note that each vertex of the cube is
also the vertex of a triangular pyramid.
If each of these pyramids is cut off the
cube, you get a solid like the one
shown in Figure 3B. This is a
cuboctahedron, and this process is
known as vertex truncation. What do
you think happens if you truncate the
vertices of an octahedron? You again
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FIGURE 3. A) CUBE WITH MIDPOINTS OF

SIDES JOINED. B) CUBE WITH VERTICES

TRUNCATED.

A.

B.



get a cuboctahedron. This illustrates a
major theorem in polyhedra theory
that says that if you truncate two
polyhedra that are duals you end up
with the same polyhedron. It should
come as no surprise that the polyhedra
you create by truncating an
icosahedron and a dodecahedron are
identical and are called
icosadodecahedra.

I recently discovered a piece of
software that allows you to play with
polyhedra in new and exciting ways. It
is the software that I used to create
most of the figures for this article. The
software is “SketchUp,” an
architectural tool developed by the
AtLast Software. The software has
received rave reviews in the
architectural world and may be of
great use in the math classroom
because it allows you to play with
polyhedra and other 3D objects. A
demo copy, which is good for 8 hours,
is free, available for both Macs and
PCs, and can be downloaded from
www.sketchup.com. What follows is a
brief description of the software and
how I used it to create a
cuboctahedron. When the program
opens, you will get a set of 3D axes and
a toolbar. To create a cuboctahedron I
did the following.

1. Use the polygon tool to create a
square. See Step 1.

2. Use the extrusion tool to create a
cube. The extrusion tool pulls the
square from the original surface in a
perpendicular direction. See Step 2.

3. Pick a vertex and use the line tool to
join the midpoints of the edges
meeting at that vertex. See Step 3.

4. Use the erase tool to erase the line
segments just formed. The line
segments disappear leaving a
triangular face. Use the paint tool 
to color this face. See Step 4.

5. Repeat the preceeding on the other
seven vertices and you have a
cuboctahedron. To do this you have
to use the flyaround tool, which
allows you to use a mouse to move
around the solid. See Step 5.

Once you get the hang of it, you can do
some very interesting operations. In
the tool bar there are zoom tools, a
scaling tool, a rotational tool, a tape
measure tool for measuring lengths, a
protractor for measuring angles, and a
variety of tools for viewing your
objects from different positions-—just
to mention a few. If you teach
geometry or are looking for easy-to-
use software for creating diagrams
with three-dimensional objects, I urge
you to check this out. 

To learn more about polyhedra theory
and how it can be integrated into the
secondary math curriculum, you can
take a one-week course in June at the
Anja Greer Mathematics, Science and
Technology Conference held at Phillips
Exeter Academy. For more information
go to http://mathconf.exeter.edu/ !

1 Eric W. Weisstein. “Platonic Solid.” From
MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/
PlatonicSolid.html.

2 If you are interested in why polygons and
polyhedra have the names they do go to
http://mathforum.org/dr.math/
faq/faq.polygon.names.html.

3 For a good discussion of the Archimedian
Solids go to http://www.fact-
index.com/a/ar/archimedean_solid.html.
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